• 最新
  • 热门
  • 所有
  • 期货市场
  • 外汇动态
  • 股票行情
谷歌大涨超9%,创纪录新高

Why Robots Fail in the Real World: Cambridge Professor Advocates Team-Based Intelligence

2025 年 9 月 28 日
全球最大黄金ETF持仓超1000吨 创三年新高

全球最大黄金 ETF 持仓超 1000 吨 创三年新高

2025 年 9 月 28 日
🌟 受够了 24 小时连轴转的工作生活?IntBell 的通话规则帮你夺回私人时间!

🌟 受够了 24 小时连轴转的工作生活?IntBell 的通话规则帮你夺回私人时间!

2025 年 9 月 28 日
白糖:原糖价格震荡磨底 国内价格维持宽幅震荡

什么情况?分析师直指 AI 热潮一大 「隐患」:OpenAI!

2025 年 9 月 28 日
中康科技「天宫一号健康产业AI应用能力中枢」发布,以卓越医学理解力重塑行业格局

中康科技 「天宫一号健康产业 AI 应用能力中枢」 发布,以卓越医学理解力重塑行业格局

2025 年 9 月 28 日
通信ETF(515880)盘中翻红大涨超4%,「光模块ETF」哪里找?布局光模块占比50% 通信ETF

市场消费表现不及预期 焦炭短期或宽幅震荡运行

2025 年 9 月 28 日
美国煤炭巨头皮博迪豪言:特朗普时代下煤炭需求将飙升五成

回收黄金首饰多少钱一克 (2025 年 9 月 26 日)

2025 年 9 月 28 日
基本面并无明显改善 纸浆短期或延续低位震荡

我听说在温州,双休是要浸猪笼的

2025 年 9 月 28 日
「一页纸」讲透美股公司之:Broadcom

「一页纸」 讲透美股公司之:Broadcom

2025 年 9 月 28 日
国庆持股OR持币?周末科技主线这个大消息,很关键!

国庆持股 OR 持币?周末科技主线这个大消息,很关键!

2025 年 9 月 28 日
特朗普发梗图恶搞:鲍威尔「被炒」,打包走人!

特朗普发梗图恶搞:鲍威尔 「被炒」,打包走人!

2025 年 9 月 28 日
黄金9995价格多少钱一克(2025年09月01日)

2025 地理信息技术创新大会 易智瑞何宁:GIS 已从专业地理工具发展为时空信息平台

2025 年 9 月 28 日
9月1日金市早评:现货黄金现上下拉锯 市场继续押注美联储9月降息

科技巨头爆火 大资金连续 11 周加仓

2025 年 9 月 28 日
禾湖财经
  • 登录
  • 首页
  • 24 小时
  • 行业新闻
  • 股票行情
  • 基金快讯
  • 期货市场
  • 禾湖观察
  • 期货研报
  • 国际金融
  • 外汇动态
  • 贵金属
2025 年 9 月 28 日 星期日
没有结果
查看所有结果
  • 首页
  • 24 小时
  • 行业新闻
  • 股票行情
  • 基金快讯
  • 期货市场
  • 禾湖观察
  • 期货研报
  • 国际金融
  • 外汇动态
  • 贵金属
没有结果
查看所有结果
禾湖财经
没有结果
查看所有结果
首页 期货市场

Why Robots Fail in the Real World: Cambridge Professor Advocates Team-Based Intelligence

3 小时 之前
在 期货市场
阅读时间: 4 mins read
0 0
A A
谷歌大涨超9%,创纪录新高

猜您喜欢

纸黄金震荡下行 提前降息可能性大增

期货黄金和现货黄金有什么区别

2 月 之前
0
AI在快速「剥削」人类的知识财富?你也可以驯化AI

大窑汽水,困在玻璃瓶里

3 月 之前
0


TMTPOST -- Despite remarkable advances in artificial intelligence (AI) models, real-world robotics continues to lag behind expectations. Robots frequently stumble in collective tasks, reacting too slowly to real-time demands or failing entirely when confronted with unforeseen scenarios.

This issue, known in the field as 「collective intelligence failure,」 has become a major roadblock for robotics researchers and industry practitioners alike.

In a recent opinion piece published in Science Robotics, Amanda Prorok, Professor of Collective Intelligence and Robotics at the University of Cambridge』s Department of Computer Science and Technology, explains why current robotic systems often fail in collaborative environments and calls for a fundamental rethink of how robotic intelligence is designed. Read the full article here.

The Limits of the Single-Model Approach

Most advanced robots today rely on massive, centralized models designed to handle all tasks—navigation, perception, interaction—through a single architecture. According to Professor Prorok, this approach is inherently flawed. 「The classic pursuit of autonomy—where each robot is expected to act independently—is unsuitable for complex, real-world environments,」 she writes.

The reasoning is straightforward: robots rarely operate in isolation. In reality, they must constantly interact with other agents, whether human or machine, to accomplish complex objectives. Current AI models often ignore these interactions, treating collective behavior as incidental rather than essential. Traditional frameworks for robotic autonomy still define intelligence as an isolated, independent property, a perspective that fails to account for the social and collaborative dynamics critical in real-world settings.

Scaling laws in AI exacerbate the problem. As tasks become more complex, the model size and required data grow exponentially. Large monolithic models, with parameters in the millions or billions, demand massive computational resources and energy. Running these models in real time is often infeasible: they require hundreds of gigabytes of memory and suffer from latency issues, making them unsuitable for high-frequency control and responsive robotics. Even on advanced development boards, only the smallest models can approach real-time performance.

Collective Intelligence: Moving Beyond 「One Brain」

Prorok argues that the solution is not to build a single superintelligent robot but to create collectives of specialized agents that collaborate effectively. In other words, intelligence should be distributed across a team rather than centralized in a single machine. Each robot should focus on a specific skill, while collaboration allows the system as a whole to achieve complex behaviors that no single agent could manage.

This approach relies on modular and compositional design for both hardware and software. Robots in a collective can learn from one another, share experiences, and dynamically reorganize at runtime to adapt to task requirements. The result is 「superlinear」 improvement: combined skills of a team outperform the sum of individual abilities.

Social learning within these collectives also enables robots to develop a deeper understanding of their capabilities and limitations. Skills like theory of mind and metacognition—essential for interacting with humans or other robots—cannot be fully acquired by isolated agents. Instead, they emerge through collaboration, where robots learn when to act independently and when to coordinate.

Experience sharing also reduces risk. In robotics, collecting physical data is costly and potentially dangerous. By distributing knowledge across a collective, robots can avoid repeating hazardous actions, mitigate catastrophic forgetting, and accelerate the overall learning process.

The Challenges of Building Robot Collectives

While the concept of robot collectives is promising, several key hurdles remain:

  1. How to Collaborate: Effective robot communication is a significant technical challenge. Most robot-to-robot networks rely on narrowband communication, making it difficult to determine 「what to communicate, when, and with whom.」 Some researchers have experimented with differentiable communication channels or graph neural networks to plan collaboration, but these methods are still in early stages.

  2. How to Implement: Designing robots capable of handling diverse and sometimes non-overlapping tasks is difficult. Concepts such as the 「hybrid robot」 paradigm remain underdeveloped. Researchers are exploring solutions inspired by ensemble models, mixture of experts, hypernetworks, and hierarchical learning, but real-time integration of specialized skills is still an open problem.

  3. How to Evaluate: Performance metrics are often simplistic, focusing on learning loss or the success of individual robots rather than team-level outcomes. Current evaluation frameworks rarely account for collective resilience, adaptability, or performance in dynamic, multi-agent environments. Without robust standards, robots may excel in isolated tests but fail when teamwork is essential.

Professor Prorok emphasizes that while AI technologies are advancing rapidly, breakthroughs in robotics will require addressing these foundational challenges rather than chasing short-term gains. True robotic intelligence will emerge not from singular, monolithic models but from systems where collaboration, specialization, and adaptability are central.

In practical terms, the robots of the future will function more like teams of humans than isolated machines. Each unit will contribute specialized skills while continuously interacting and learning from its peers. Only then can robots be expected to operate reliably in the unpredictable, dynamic conditions of the real world.

This collective intelligence approach represents a paradigm shift for robotics. It moves away from the notion that one super brain can solve all problems and toward a vision of distributed, adaptable, and socially aware robotic systems. For researchers, engineers, and investors in robotics, the message is clear: collaboration, not size alone, is the key to unlocking the next generation of intelligent machines.

 

Reference: Amanda Prorok, Collective Intelligence in Robotics: Rethinking Autonomy, Science Robotics, 2025.

 

相关 文章

全球最大黄金ETF持仓超1000吨 创三年新高
基金快讯

全球最大黄金 ETF 持仓超 1000 吨 创三年新高

23 分 之前

【文章来源:天天财富】  今年以来黄金已经 36 次刷新历史新高,累计涨幅达到 43%。市场对黄金持有的信心空前高涨,全球最大的黄金 ETF——SPDR 的持仓量已经达...

🌟 受够了 24 小时连轴转的工作生活?IntBell 的通话规则帮你夺回私人时间!
基金快讯

🌟 受够了 24 小时连轴转的工作生活?IntBell 的通话规则帮你夺回私人时间!

26 分 之前

经营跨境业务,不代表要全天 24 小时待命。IntBell 智能通话管理功能,助你实现真正的工作与生活平衡! ⏰ 智能呼叫转移 日间来电自动转接至对应部门 非工...

  • 热门
  • 评论
  • 最新
老凤祥回收黄金多少钱一克(2025年6月27日)

国海证券策略首席分析师胡国鹏:下半年 A 股牛途在望,配置核心在科技成长

2025 年 8 月 1 日
铑多少钱一克(2025年06月27日)

人工智能+行动重磅发布!资金借道软件 ETF(515230) 布局,连续两日吸金近 2 亿元

2025 年 8 月 1 日
郑州宝泉钱币周五(6月27日)银条价格8.79元/克

老凤祥黄金价格今天多少一克 (2025 年 07 月 30 日)

2025 年 8 月 1 日
Lesson 1: Basics Of Photography With Natural Lighting

The Single Most Important Thing You Need To Know About Success

Lesson 1: Basics Of Photography With Natural Lighting

Lesson 1: Basics Of Photography With Natural Lighting

Lesson 1: Basics Of Photography With Natural Lighting

5 Ways Animals Will Help You Get More Business

全球最大黄金ETF持仓超1000吨 创三年新高

全球最大黄金 ETF 持仓超 1000 吨 创三年新高

2025 年 9 月 28 日
🌟 受够了 24 小时连轴转的工作生活?IntBell 的通话规则帮你夺回私人时间!

🌟 受够了 24 小时连轴转的工作生活?IntBell 的通话规则帮你夺回私人时间!

2025 年 9 月 28 日
白糖:原糖价格震荡磨底 国内价格维持宽幅震荡

什么情况?分析师直指 AI 热潮一大 「隐患」:OpenAI!

2025 年 9 月 28 日
  • 隐私政策
  • 联系我们
  • 关于禾湖
联系我们:+86 15388934451

Copyright © 2025 长沙禾湖信息科技有限公司. 湘 ICP 备 2023006560 号-2

没有结果
查看所有结果
  • Home
  • Tech

Copyright © 2025 长沙禾湖信息科技有限公司. 湘 ICP 备 2023006560 号-2

欢迎回来!

在下面登录您的帐户

忘记密码?

重置您的密码

请输入您的用户名或电子邮件地址以重置密码。

登录