• 最新
  • 热门
  • 所有
  • 期货市场
  • 外汇动态
  • 股票行情
谷歌大涨超9%,创纪录新高

Why Robots Fail in the Real World: Cambridge Professor Advocates Team-Based Intelligence

2025 年 9 月 28 日
主打「现做」的路边摊也越来越贵了

主打 「现做」 的路边摊也越来越贵了

2025 年 9 月 28 日
被低估的传感器市场,潜力显现

被低估的传感器市场,潜力显现

2025 年 9 月 28 日
【财经分析】专家预判年底前埃镑或维持在高位

【财经分析】 借力 「产学研」 合作道恩集团做强化工新材料产业链

2025 年 9 月 28 日
24K金回收价格多少钱一克(2025年09月01日)

市场过剩状态持续 氧化铝短期或将偏弱运行

2025 年 9 月 28 日
「清华系」VS「阿里系」:中国大模型创业的「隐形门派」之争

2025 年 10 元蛇年纪念币多少钱一枚 (2025 年 9 月 26 日)

2025 年 9 月 28 日
快抖直播录制助手:全平台直播自动录屏软件

快抖直播录制助手:全平台直播自动录屏软件

2025 年 9 月 28 日
零跑汽车官方回应成失信被执行人

零跑汽车官方回应成失信被执行人

2025 年 9 月 28 日
化工龙头ETF(516220)涨超2%,机构:行业景气回暖与供给侧优化共振

光大证券:把握震荡布局窗口 重点关注 TMT 主线

2025 年 9 月 28 日
特朗普称将对未在美建厂芯片企业加征关税

爱泼斯坦档案持续披露:马斯克、Peter Thiel 和班农被提及

2025 年 9 月 28 日
今日pd900钯金回收价格查询(2025年09月01日)

多个利好来袭!市场能否迎来变盘?——道达对话牛博士

2025 年 9 月 28 日
24K金回收价格多少钱一克(2025年09月01日)

小米大家电进军欧洲;美团 Keeta 将在迪拜上线;泡泡玛特美国网站访问量翻番 |一周大公司出海动态

2025 年 9 月 28 日
用户观看时长单季暴涨270%,B站、小红书都在做的视频播客「卷」起来了

用户观看时长单季暴涨 270%,B 站、小红书都在做的视频播客 「卷」 起来了

2025 年 9 月 28 日
禾湖财经
  • 登录
  • 首页
  • 24 小时
  • 行业新闻
  • 股票行情
  • 基金快讯
  • 期货市场
  • 禾湖观察
  • 期货研报
  • 国际金融
  • 外汇动态
  • 贵金属
2025 年 9 月 28 日 星期日
没有结果
查看所有结果
  • 首页
  • 24 小时
  • 行业新闻
  • 股票行情
  • 基金快讯
  • 期货市场
  • 禾湖观察
  • 期货研报
  • 国际金融
  • 外汇动态
  • 贵金属
没有结果
查看所有结果
禾湖财经
没有结果
查看所有结果
首页 期货市场

Why Robots Fail in the Real World: Cambridge Professor Advocates Team-Based Intelligence

5 小时 之前
在 期货市场
阅读时间: 4 mins read
0 0
A A
谷歌大涨超9%,创纪录新高

猜您喜欢

6 月 11 日 PTA 期货仓单较上日增持 4404 张

4 月 之前
0

4 月 9 日棉花期货仓单较上日减持 58 张

6 月 之前
0


TMTPOST -- Despite remarkable advances in artificial intelligence (AI) models, real-world robotics continues to lag behind expectations. Robots frequently stumble in collective tasks, reacting too slowly to real-time demands or failing entirely when confronted with unforeseen scenarios.

This issue, known in the field as 「collective intelligence failure,」 has become a major roadblock for robotics researchers and industry practitioners alike.

In a recent opinion piece published in Science Robotics, Amanda Prorok, Professor of Collective Intelligence and Robotics at the University of Cambridge』s Department of Computer Science and Technology, explains why current robotic systems often fail in collaborative environments and calls for a fundamental rethink of how robotic intelligence is designed. Read the full article here.

The Limits of the Single-Model Approach

Most advanced robots today rely on massive, centralized models designed to handle all tasks—navigation, perception, interaction—through a single architecture. According to Professor Prorok, this approach is inherently flawed. 「The classic pursuit of autonomy—where each robot is expected to act independently—is unsuitable for complex, real-world environments,」 she writes.

The reasoning is straightforward: robots rarely operate in isolation. In reality, they must constantly interact with other agents, whether human or machine, to accomplish complex objectives. Current AI models often ignore these interactions, treating collective behavior as incidental rather than essential. Traditional frameworks for robotic autonomy still define intelligence as an isolated, independent property, a perspective that fails to account for the social and collaborative dynamics critical in real-world settings.

Scaling laws in AI exacerbate the problem. As tasks become more complex, the model size and required data grow exponentially. Large monolithic models, with parameters in the millions or billions, demand massive computational resources and energy. Running these models in real time is often infeasible: they require hundreds of gigabytes of memory and suffer from latency issues, making them unsuitable for high-frequency control and responsive robotics. Even on advanced development boards, only the smallest models can approach real-time performance.

Collective Intelligence: Moving Beyond 「One Brain」

Prorok argues that the solution is not to build a single superintelligent robot but to create collectives of specialized agents that collaborate effectively. In other words, intelligence should be distributed across a team rather than centralized in a single machine. Each robot should focus on a specific skill, while collaboration allows the system as a whole to achieve complex behaviors that no single agent could manage.

This approach relies on modular and compositional design for both hardware and software. Robots in a collective can learn from one another, share experiences, and dynamically reorganize at runtime to adapt to task requirements. The result is 「superlinear」 improvement: combined skills of a team outperform the sum of individual abilities.

Social learning within these collectives also enables robots to develop a deeper understanding of their capabilities and limitations. Skills like theory of mind and metacognition—essential for interacting with humans or other robots—cannot be fully acquired by isolated agents. Instead, they emerge through collaboration, where robots learn when to act independently and when to coordinate.

Experience sharing also reduces risk. In robotics, collecting physical data is costly and potentially dangerous. By distributing knowledge across a collective, robots can avoid repeating hazardous actions, mitigate catastrophic forgetting, and accelerate the overall learning process.

The Challenges of Building Robot Collectives

While the concept of robot collectives is promising, several key hurdles remain:

  1. How to Collaborate: Effective robot communication is a significant technical challenge. Most robot-to-robot networks rely on narrowband communication, making it difficult to determine 「what to communicate, when, and with whom.」 Some researchers have experimented with differentiable communication channels or graph neural networks to plan collaboration, but these methods are still in early stages.

  2. How to Implement: Designing robots capable of handling diverse and sometimes non-overlapping tasks is difficult. Concepts such as the 「hybrid robot」 paradigm remain underdeveloped. Researchers are exploring solutions inspired by ensemble models, mixture of experts, hypernetworks, and hierarchical learning, but real-time integration of specialized skills is still an open problem.

  3. How to Evaluate: Performance metrics are often simplistic, focusing on learning loss or the success of individual robots rather than team-level outcomes. Current evaluation frameworks rarely account for collective resilience, adaptability, or performance in dynamic, multi-agent environments. Without robust standards, robots may excel in isolated tests but fail when teamwork is essential.

Professor Prorok emphasizes that while AI technologies are advancing rapidly, breakthroughs in robotics will require addressing these foundational challenges rather than chasing short-term gains. True robotic intelligence will emerge not from singular, monolithic models but from systems where collaboration, specialization, and adaptability are central.

In practical terms, the robots of the future will function more like teams of humans than isolated machines. Each unit will contribute specialized skills while continuously interacting and learning from its peers. Only then can robots be expected to operate reliably in the unpredictable, dynamic conditions of the real world.

This collective intelligence approach represents a paradigm shift for robotics. It moves away from the notion that one super brain can solve all problems and toward a vision of distributed, adaptable, and socially aware robotic systems. For researchers, engineers, and investors in robotics, the message is clear: collaboration, not size alone, is the key to unlocking the next generation of intelligent machines.

 

Reference: Amanda Prorok, Collective Intelligence in Robotics: Rethinking Autonomy, Science Robotics, 2025.

 

相关 文章

主打「现做」的路边摊也越来越贵了
行业新闻

主打 「现做」 的路边摊也越来越贵了

4 分 之前

文 | 道总有理前几日,各大社交平台都被罗永浩与贾国龙之间的骂战包围。9 月 15 日,坚持为自己正声的西贝发布道歉公告,事实上,剖析这场激烈的舆论战,西贝是否使用预...

被低估的传感器市场,潜力显现
期货市场

被低估的传感器市场,潜力显现

10 分 之前

文 | 半导体产业纵横,作者 | 丰宁夏天刚刚过去,但是在传感器行业,才刚刚迎来 「夏天」。在半导体产业的聚光灯下,传感器始终不如集成电路那般耀眼。它很少出现在技...

  • 热门
  • 评论
  • 最新
老凤祥回收黄金多少钱一克(2025年6月27日)

国海证券策略首席分析师胡国鹏:下半年 A 股牛途在望,配置核心在科技成长

2025 年 8 月 1 日
铑多少钱一克(2025年06月27日)

人工智能+行动重磅发布!资金借道软件 ETF(515230) 布局,连续两日吸金近 2 亿元

2025 年 8 月 1 日
郑州宝泉钱币周五(6月27日)银条价格8.79元/克

老凤祥黄金价格今天多少一克 (2025 年 07 月 30 日)

2025 年 8 月 1 日
Lesson 1: Basics Of Photography With Natural Lighting

The Single Most Important Thing You Need To Know About Success

Lesson 1: Basics Of Photography With Natural Lighting

Lesson 1: Basics Of Photography With Natural Lighting

Lesson 1: Basics Of Photography With Natural Lighting

5 Ways Animals Will Help You Get More Business

主打「现做」的路边摊也越来越贵了

主打 「现做」 的路边摊也越来越贵了

2025 年 9 月 28 日
被低估的传感器市场,潜力显现

被低估的传感器市场,潜力显现

2025 年 9 月 28 日
【财经分析】专家预判年底前埃镑或维持在高位

【财经分析】 借力 「产学研」 合作道恩集团做强化工新材料产业链

2025 年 9 月 28 日
  • 隐私政策
  • 联系我们
  • 关于禾湖
联系我们:+86 15388934451

Copyright © 2025 长沙禾湖信息科技有限公司. 湘 ICP 备 2023006560 号-2

没有结果
查看所有结果
  • Home
  • Tech

Copyright © 2025 长沙禾湖信息科技有限公司. 湘 ICP 备 2023006560 号-2

欢迎回来!

在下面登录您的帐户

忘记密码?

重置您的密码

请输入您的用户名或电子邮件地址以重置密码。

登录